Direct Mutagenesis of Thousands of Genomic Targets Using Microarray-Derived Oligonucleotides
نویسندگان
چکیده
Multiplex Automated Genome Engineering (MAGE) allows simultaneous mutagenesis of multiple target sites in bacterial genomes using short oligonucleotides. However, large-scale mutagenesis requires hundreds to thousands of unique oligos, which are costly to synthesize and impossible to scale-up by traditional phosphoramidite column-based approaches. Here, we describe a novel method to amplify oligos from microarray chips for direct use in MAGE to perturb thousands of genomic sites simultaneously. We demonstrated the feasibility of large-scale mutagenesis by inserting T7 promoters upstream of 2585 operons in E. coli using this method, which we call Microarray-Oligonucleotide (MO)-MAGE. The resulting mutant library was characterized by high-throughput sequencing to show that all attempted insertions were estimated to have occurred at an average frequency of 0.02% per locus with 0.4 average insertions per cell. MO-MAGE enables cost-effective large-scale targeted genome engineering that should be useful for a variety of applications in synthetic biology and metabolic engineering.
منابع مشابه
microDuMIP: target-enrichment technique for microarray-based duplex molecular inversion probes
Molecular inversion probe (MIP)-based capture is a scalable and effective target-enrichment technology that can use synthetic single-stranded oligonucleotides as probes. Unlike the straightforward use of synthetic oligonucleotides for low-throughput target capture, high-throughput MIP capture has required laborious protocols to generate thousands of single-stranded probes from DNA microarray be...
متن کاملOptimal clone identifier for genomic shotgun libraries: "OC Identifier tool".
In DNA microarray experiments, the gene fragments that are spotted on the slides are usually obtained by the synthesis of specific oligonucleotides that are able to amplify genes through PCR. Shotgun library sequences are an alternative to synthesis of primers for the study of each gene in the genome. The possibility of putting thousands of gene sequences into a single slide allows the use of s...
متن کاملMixture modeling for genome-wide localization of transcription factors.
Chromatin immunoprecipitation followed by DNA microarray analysis (ChIP-chip methodology) is an efficient way of mapping genome-wide protein-DNA interactions. Data from tiling arrays encompass DNA-protein interaction measurements on thousands or millions of short oligonucleotides (probes) tiling a whole chromosome or genome. We propose a new model-based method for analyzing ChIP-chip data. The ...
متن کاملI-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies
The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...
متن کاملA Review of DNA Microarray Data Analysis
Background: The mystery of life for a living organism resides in the function of thousands of genes and their products. The striking question of how to get the whole system of an organism in one picture, has been pondering for years. Traditional methods work on one gene at a time, which is time consuming and costly. The ingenuous idea of DNA microarrays created a solution to this problem. DNA m...
متن کامل